
PIC Architecture

Instruction Set & Operations

PICs-Instruction Set

 Have Covered Instruction Set Basics

 Accumulator Architecture

 Direct addressing

 Indirect addressing

 Now lets look at the instructions

MOVE instructions

 PIC spend a lot of time moving data around as

data stored in memory

 movlw 20

 Move the hex value H’20’ into W

 To load a decimal must use the correct assembler

directive - D’20’

 movlw -2

 Loads B’1111 1110 into WREG

More on MOVE

 Initialization of a variable

 movlw B’11100000’

 movwf TRIST

 Initialize the PORTB data direction register

 Assembler MACRO

 MOVLF B’11100000’,TRISB

 Assembled into the two instructions above

The movff instruction
 movff PORTB, PORTB_COPY
 movff - a two-word instruction

 Thus source and destination have 12-bit addresses
 Source – instruction bits + BSR

 Destination – instruction 2nd byte

 Moves data from a 1-byte source to a 1-byte
destination.

 For instruction memory as efficient as the regular
move instruction.

The movwf

 movwf f(,Banked) – Move WREG to f

 For storing back the result of an operation

 Does not affect status bits

The movf instruction

 Move the value and set the status register bits

appropriately

 Affects N and Z bits

Move summary
 movlw k - load literal value

 movwf MYVAR - move value but do not affect
status bits

 movff V1,V2 - move data at source address to
data at destination address

 movf f,F/W - move value and affect status bits
 What does movf COUNT,F do?

Other move/load instructions

 lrsr 0,num1 - load FSR register

 1st argument is FSR register number

 2nd argument is value to load

 Saving a FSR register

 movff FSR0L,FSR0L_TEMP

 movff FSR0H,FRS0H_TEMP

 Loading a FSR register

 movff FSR0L_TEMP,FSR0L

 movff FRS0H_TEMP,FSR0H

Load BSR register & other

 movlb 2

 Load the value of 2 into the BSR register

 clrf TEMP – Load 0x00 into variable TEMP

 setf TEMP – Load 0xff into variable TEMP

 swapf f - swap nibbles of f

Single operand instructions

 Single bit instructions

 bsf PORTB,0 - Set the lsb of PORTB

 bcf PORTB,1 - clear bit 1 of PORTB

 btg PORTB,2 - toggle bit 2 of PORTB

 Rotate instructions illustrated on next slide

 rlcf rlncf rrcf rrncf

 cf rotate including carry bit

 ncf rotate without carry bit

Logical instructions

 andlw B’00001111’ And WREG with value

 andwf f,F/W - AND WREG with f putting result

back in F or WREG

 iorlw k -Inclusive OR literal value and WREG

 iorwf f,F/W – inclusive OR WREG with f and put

result into f or WREG

 xorlw k, xorwf f,F/W - Exclusive OR

Arithmetic

 addlw k, addwf f,F/W

 addwfc f,F/W - Add WREG, F and carry bit

 daw – Decimal adjust sum of pack BCD

 subwf, sublw

 subwfb f,F/W - subtract with borrow

Multiplicaiton

 mullw k - multiply WREG with literal value k

putting result in PRODH:PRODL reg - WREG

unaffected

 mullwf f(,Banked) - Multiply WREG with f putting

results in PRODH:PRODL - both WREG and f

remain unchanged

Branches

 Needed for program flow control

 Tests on status register

 bc, bnc, bz, bnz, bn, bnn, bov, bnov

 Use the c, x, n, and ov bits of the status register

 bra – branch always

Conditional Skip instructions
 Ten further instructions that test for a condition

and skip over the next instruction if the condition
is met.
 Next instruction is typically a branch or rcall

 Very useful at end of a loop

 Loop code ….

 decfsz count,F ;Decrement and skip if zero

 bra top_of_loop

Skip instructions

 cpfseq f - skip if f = WREG

 cpfsgt f - skip if f > WREG

 cpfslt f - skip if f < WREG

 tstfsz t - Test f, skip if zero

 decfsz f,F/W - Decr f, res->WREG,skip if 0

 dcfsnz f,F/W - Decr f, res->WREG,skip not 0

 incfsz f,F/W – Incr f, res->WREG, skip if 0

 infsnz f,F/W – Incr f, res->WREG, skip not 0

Other – Subroutine, interrupt
 rcall label - call subroutine (within 512 instr)

 call label – call subroutine (anywhere)

 call label, FAST - call subroutine, copy state to
shadow registers

 return – return form subroutine

 return FAST - return and restore from shadow
registers

 return k - return and put value k in WREG

cont
 retfie - return from interrupt and re-enable

 retfie FAST – return, re-enable- restore

 push - Push addr of next instruction onto stack

 pop - discard address on top of stack

 clrwdt - clear watchdog timer

 sleep - Go into standby mode

 reset - software controlled reset

 nop

Review: PIC instructions
 Logical operations
 andlw/andwf
 iorlw/iorwf
 xorlw/xorwf

 Rotates
 rrf
 rlf

 Jumps/calls/return
 goto
 call
 return/retlw/retfie

 Miscellaneous
 nop
 sleep/clrwdt

Conditional Execution

Examples:

 btfsc TEMP1, 0 ; Skip the next instruction if bit 0 of TEMP1 equals 0

 btfss STATUS, C ; Skip the next instruction if C==1

 decfsz TEMP1, F ; Decrement TEMP1, skip if TEMP1==0

 incfsz TEMP1, W ; W <- TEMP1+1 , skip if W==0 (TEMP1==0xFF)

 ; Leave TEMP1 unchanged

btfsc f, b ;Test bit b of register f, where b=0 to 7, skip if clear

btfss f, b ;Test bit b of register f, where b=0 to 7, skip if set

decfsz f, F(W) ;decrement f, putting result in F or W, skip if zero

incfsz f, F(W) ;increment f, putting result in F or W, skip if zero

STATUS bits:

 none

 Conditional execution in PIC: skip next instruction if condition true

 Two general forms
 Test bit and skip if bit clear/set

 Increment/decrement register and skip if result is 0

Example

Show the values of all changed registers after each

of the following sequences

What high-level operation does each perform?

(a) movf a, W

 sublw 0xA

 btfsc STATUS, Z

 goto L1

 incf b, W

 goto L2

L1

 decf b, W

L2

 movwf a

(b) movf NUM2, W

 subwf NUM1, W

 btfss STATUS, C

 goto BL

 movf NUM1, W

 goto Done

BL

 movf NUM2, W

Done

 movwf MAX

Example solution (part a)

 movf a, W  W = a

 sublw 0xA  W = 10 – a

 btfsc STATUS, Z  Skip goto if result

 is non-zero

 goto L1  Goto L1 if result == 0

  Reach this point if

 result non-zero

 incf b, W  W = b + 1

 goto L2

L1

 decf b, W  W = b - 1

L2

 movwf a  a = W  value depends

 on what’s executed before this

High-level operation:

if ((10 – a) == 0)

 a = b – 1

else

 a = b + 1

Example solution (part b)

 movf NUM2, W  W = NUM2

 subwf NUM1, W  W = NUM1 – W

 = NUM1 – NUM2

 btfss STATUS, C  Carry indicates

 “above”

  if set, NUM1 > NUM2

 goto BL

 movf NUM1, W  if (NUM1 >= NUM2)

 W = NUM1

 goto Done  Skip “below” section

BL

 movf NUM2, W  if (NUM1 < NUM2)

 W = NUM2

Done

 movwf MAX

High-level operation:

if (NUM1 < NUM2)

 MAX = NUM2

else

 MAX = NUM1

Working with 16-bit data

Assume a 16-bit counter, the upper byte of the counter is called COUNTH and the lower byte is
called COUNTL.

Decrement a 16-bit counter

 movf COUNTL, F ; Set Z if lower byte == 0

 btfsc STATUS, Z

 decf COUNTH, F ; if so, decrement COUNTH

 decf COUNTL, F ; in either case decrement COUNTL

Test a 16-bit variable for zero
 movf COUNTL, F ; Set Z if lower byte == 0

 btfsc STATUS, Z ; If not, then done testing

 movf COUNTH, F ; Set Z if upper byte == 0

 btfsc STATUS, Z ; if not, then done

 goto BothZero ; branch if 16-bit variable == 0

CarryOn

A Delay Subroutine
; ***

; TenMs subroutine and its call inserts a delay of exactly ten milliseconds

; into the execution of code.

; It assumes a 4 MHz crystal clock. One instruction cycle = 4 * Tosc.

; TenMsH equ 13 ; Initial value of TenMs Subroutine's counter

; TenMsL equ 250

; COUNTH and COUNTL are two variables

TenMs

 nop ; one cycle

 movlw TenMsH ; Initialize COUNT

 movwf COUNTH

 movlw TenMsL

 movwf COUNTL

Ten_1

 decfsz COUNTL,F ; Inner loop

 goto Ten_1

 decfsz COUNTH,F ; Outer loop

 goto Ten_1

 return

Yes

Yes

COUNTH = TenMsH

COUNTL = TenMsL

COUNTL = COUNTL - 1

COUNTL == 0 ?
No

Yes

No

return

COUNTH = COUNTH - 1

COUNTH == 0 ?

Yes

Applications

 Personal information products: Cell phone,
pager, watch, pocket recorder, calculator

 Laptop components: mouse, keyboard,
modem, fax card, sound card, battery charger

 Home appliances: door lock, alarm clock,
thermostat, air conditioner, tv remote, hair
dryer, VCR, small refrigerator, exercise
equipment, washer/dryer, microwave oven

 Toys; video games, cars, dolls, etc.

Summary

 Microprocessors and embedded controllers are a

ubiquitous part of life today

 These devices come in a wide variety of

configurations and designs

 Headhunters report that EEs familiar with µC, µP

design are in the highest possible demand

 Feedback

Assignment

 Illustrate PIC instruction set with example.

